Perturbative method for solving elastic problems of one-dimensional hexagonal quasicrystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys.: Condens. Matter 134123
(http://iopscience.iop.org/0953-8984/13/18/319)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.226
The article was downloaded on 16/05/2010 at 11:56

Please note that terms and conditions apply.

Perturbative method for solving elastic problems of one-dimensional hexagonal quasicrystals

Yan-ze Peng ${ }^{1}$, Tian-you Fan ${ }^{1}$, Fu-ru Jiang ${ }^{2}$, Wei-guo Zhang ${ }^{3}$ and Ying-fei Sun ${ }^{4}$
${ }^{1}$ Research Centre of Materials Science, Beijing Institute of Technology, PO Box 327, Beijing 100080, People's Republic of China
${ }^{2}$ Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, People's Republic of China
${ }^{3}$ Department of Basic Sciences, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
${ }^{4}$ Department of Automation, Tsinghua University, Beijing 100084, People's Republic of China
E-mail: sdwx1@263.net

Received 4 January 2001, in final form 6 March 2001

Abstract

A new perturbation technique for solving elastic three-dimensional problems of quasicrystals is supplied. The key idea of this technique is to simplify the equations by introducing a parameter which does not exist in the original equations, and then look for the perturbation solution for the problems of interest. To illustrate the utility of our method and for comparison, we consider the crack problem for one-dimensional hexagonal quasicrystals with point groups $6 \mathrm{~mm}, 62_{h} 2_{h}, \overline{6} m 2_{h}$ and $6 / m_{h} m m$, whose exact solution has been obtained by the first two authors of this paper. Only up to the order zero approximation, we get the exact expression for the stress intensity factor, which is the most important physical quantity in fracture theory. Moreover, the same procedure can be used to deal with the elastic problems for two- and threedimensional quasicrystals. A simple review of the method is finally given.

1. Introduction

Since the discovery of three-dimensional (3D) icosahedral quasicrystals (QCs) in in Al-Mn alloys [1], 3D cubic QCs [2,3], two-dimensional (2D) QCs [4-6] and one-dimensional (1D) QCs $[7,8]$ have been discovered in succession, and QCs have become the focus of theoretical and experimental studies in the physics of condensed matter. The physical properties, such as the structural, electronic, magnetic, optical and thermal properties, of QCs have been investigated intensively. Elasticity is one of the interesting properties of QCs. Based on Landau theory, QC elasticity theory was formulated [9-12]. On the other hand, as in conventional crystals, many structural defects have already been observed experimentally in QCs. For example, some experimental results show that some 2D defects such as planar defects and
cracks produced by cleavage are detected in QCs [13, 14]. Also, some macroscopic cracks or flaws inevitably exist in QC solids. So the defect problems for QCs, such as dislocation and crack problems, are studied by many authors [15-23]. However, most of the authors consider only the elastic plane or antiplane problems for QCs [15-21], i.e., they suppose that the elastic fields induced in QCs are independent of the variable z.

It is well known that the elastic equations of QCs are much more complicated than those in classical elasticity theory. The exact solutions for QC elastic equations can be obtained only in a few cases. For example, we have obtained the exact elasticity theory of 1D hexagonal QCs with point groups $6 m m, 62_{h} 2_{h}, \overline{6} m 2_{h}$ and $6 / m_{h} m m$ [22]. But for other QCs it seems indispensable for us to develop approximate method. In our previous work [23], we proposed the perturbation method for solving elastic 3D problems of icosahedral QCs (regarding the elastic constant R of phonon-phason coupling as a perturbation parameter). However, it is not general. For instance, it is not easily used to deal with elastic 3D problems of cubic QCs.

In this paper, we supply a new perturbation technique for solving elastic 3D problems of QCs. This method is general and can be used to deal with elastic problems for 1D, 2D and 3D QCs. To illustrate its utility and for comparison, we consider the same problem as in [22] (because its exact solution has been obtained by the first two of the authors in this paper), that is, the problem of a circular crack embedded in an infinite 1D hexagonal QC of point group 6 mm . Only up to the order zero approximation, the exact stress intensity factor expression (which is the most important physical quantity in fracture theory) for the loading of mode I is obtained. It is easy to see that the same procedure can be used to deal with the elastic problems for 2D and 3D QCs.

2. The basic equations

According to 1D QC elasticity theory [24], strain- and stress-displacement relations for 1D hexagonal QCs with point groups $6 \mathrm{~mm}, 62_{h} 2_{h}, \overline{6} m 2_{h}$ and $6 / m_{h} m m$, respectively, are

$$
\begin{align*}
& \varepsilon_{i j}=\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right) / 2 \quad w_{i j}=\partial_{j} w_{i} \\
& \sigma_{x x}=c_{11} \partial_{x} u_{x}+\left(c_{11}-2 c_{66}\right) \partial_{y} u_{y}+c_{13} \partial_{z} u_{z}+R_{1} \partial_{z} w_{z} \\
& \sigma_{y y}=\left(c_{11}-2 c_{66}\right) \partial_{x} u_{x}+c_{11} \partial_{y} u_{y}+c_{13} \partial_{z} u_{z}+R_{1} \partial_{z} w_{z} \\
& \sigma_{z z}=c_{13} \partial_{x} u_{x}+c_{13} \partial_{y} u_{y}+c_{33} \partial_{z} u_{z}+R_{2} \partial_{z} w_{z} \\
& \sigma_{y z}=\sigma_{z y}=c_{44}\left(\partial_{y} u_{z}+\partial_{z} u_{y}\right)+R_{3} \partial_{y} w_{z} \\
& \sigma_{z x}=\sigma_{x z}=c_{44}\left(\partial_{x} u_{z}+\partial_{z} u_{x}\right)+R_{3} \partial_{x} w_{z} \\
& \sigma_{x y}=\sigma_{y x}=c_{66}\left(\partial_{x} u_{y}+\partial_{y} u_{x}\right) \\
& \left.H_{z z}=R_{1}\left(\partial_{x} u_{x}+\partial_{y} u_{u}\right)+R_{2} \partial_{z} u_{z}\right)+K_{1} \partial_{z} w_{z} \\
& H_{z x}=R_{3}\left(\partial_{x} u_{z}+\partial_{z} u_{x}\right)+K_{2} \partial_{x} w_{z} \\
& H_{z y}=R_{3}\left(\partial_{x} u_{z}+\partial_{z} u_{y}\right)+K_{2} \partial_{x} w_{z} . \tag{1}
\end{align*}
$$

The equilibrium equations in terms of displacements, in the absence of body forces, are
$\left(c_{11} \partial_{x}^{2}+c_{66} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{x}+\left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{y}+\left(c_{13}+c_{44}\right) \partial_{x} \partial_{z} u_{z}+\left(R_{1}+R_{3}\right) \partial_{x} \partial_{z} w_{z}=0$
$\left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{x}+\left(c_{66} \partial_{x}^{2}+c_{11} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{y}+\left(c_{13}+c_{44}\right) \partial_{y} \partial_{z} u_{z}+\left(R_{1}+R_{3}\right) \partial_{y} \partial_{z} w_{z}=0$
$\left(c_{13}+c_{44}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\left(c_{44} \partial_{x}^{2}+c_{44} \partial_{y}^{2}+c_{33} \partial_{z}^{2}\right) u_{z}+\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] w_{z}=0$
$\left(R_{1}+R_{3}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] u_{z}+\left[K_{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+K_{1} \partial_{z}^{2}\right] w_{z}=0$
where the z-axis is assumed to be the quasiperiodic axis, and the $x y$-plane the periodic plane of the $\mathrm{QC}, u_{i}, w_{i}$ phonon and phason displacements in the physical and perpendicular spaces,
respectively, $\sigma_{i j}$ and $\varepsilon_{i j}$ phonon stresses and strains, $H_{i j}$ and $w_{i j}$ phason stresses and strains, $c_{11}, c_{13}, c_{33}, c_{44}, c_{66}, K_{1}, K_{2}$ the elastic constants corresponding to the phonon and phason fields and R_{1}, R_{2}, R_{3} the elastic constants of phonon-phason coupling. We should keep in mind that the subscripts i, j for $H_{i j}, w_{i j}$ cannot be exchanged according to their meanings [12]. It is very important for us to write the boundary conditions correctly.

3. The perturbation method

Introducing a dimensionless parameter δ in equations (2), then we rewrite (2) as

$$
\begin{align*}
& \left(c_{11} \partial_{x}^{2}+c_{66} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{x}+\left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{y}+\left(c_{13}+c_{44}\right) \partial_{x} \partial_{z} u_{z}+\delta\left(R_{1}+R_{3}\right) \partial_{x} \partial_{z} w_{z}=0 \\
& \left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{x}+\left(c_{66} \partial_{x}^{2}+c_{11} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{y}+\left(c_{13}+c_{44}\right) \partial_{y} \partial_{z} u_{z}+\delta\left(R_{1}+R_{3}\right) \partial_{y} \partial_{z} w_{z}=0 \\
& \left(c_{13}+c_{44}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\left(c_{44} \partial_{x}^{2}+c_{44} \partial_{y}^{2}+c_{33} \partial_{z}^{2}\right) u_{z}+\delta\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] w_{z}=0 \\
& \delta\left(R_{1}+R_{3}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\delta\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] u_{z}+\left[K_{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+K_{1} \partial_{z}^{2}\right] w_{z}=0 \tag{3}
\end{align*}
$$

When $\delta=1$, equations (3) recover (2). For equations (3) we look for the solution of the form

$$
\begin{array}{ll}
u_{x}=\sum_{i=0}^{\infty} \delta^{i} u_{x}^{(i)} & u_{u}=\sum_{i=0}^{\infty} \delta^{i} u_{y}^{(i)} \\
u_{z}=\sum_{i=0}^{\infty} \delta^{i} u_{z}^{(i)} & w_{z}=\sum_{i=0}^{\infty} \delta^{i} w_{z}^{(i)} \tag{4}
\end{array}
$$

where $u_{x}^{(i)}, u_{y}^{(i)}, u_{z}^{(i)}$ and $w_{z}^{(i)}$ satisfy the following equations:

$$
\begin{align*}
& \left(c_{11} \partial_{x}^{2}+c_{66} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{x}^{(i)}+\left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{y}^{(i)}+\left(c_{13}+c_{44}\right) \partial_{x} \partial_{z} u_{z}^{(i)} \\
& =-\left(R_{1}+R_{3}\right) \partial_{x} \partial_{z} w_{z}^{(i-1)} \\
& \left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{x}^{(i)}+\left(c_{66} \partial_{x}^{2}+c_{11} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{y}^{(i)}+\left(c_{13}+c_{44}\right) \partial_{y} \partial_{z} u_{z}^{(i)} \\
& =-\left(R_{1}+R_{3}\right) \partial_{y} \partial_{z} w_{z}^{(i-1)} \\
& \left(c_{13}+c_{44}\right)\left(\partial_{x} \partial_{z} u_{x}^{(i)}+\partial_{y} \partial_{z} u_{y}^{(i)}\right)+\left(c_{44} \partial_{x}^{2}+c_{44} \partial_{y}^{2}+c_{33} \partial_{z}^{2}\right) u_{z}^{(i)} \\
& =-\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] w_{z}^{(i-1)} \\
& {\left[K_{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+K_{1} \partial_{z}^{2}\right] w_{z}^{(i)}} \\
& =-\left(R_{1}+R_{3}\right)\left(\partial_{x} \partial_{z} u_{x}^{(i-1)}+\partial_{y} \partial_{z} u_{y}^{(i-1)}\right)-\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] u_{z}^{(i-1)} \tag{5}
\end{align*}
$$

From now on, the quantities with negative superscripts are taken as zero, and one can directly verify that equations (5) with $i=0$ can be satisfied by (also see [22])

$$
\begin{array}{ll}
u_{x}^{(0)}=\partial_{x}\left(F_{1}+F_{2}\right)-\partial_{y} F_{3} & u_{y}^{(0)}=\partial_{y}\left(F_{1}+F_{2}\right)+\partial_{x} F_{3} \\
u_{z}^{(0)}=\partial_{z}\left(m_{1} F_{1}+m_{2} F_{2}\right) & w_{z}^{(0)}=F_{4} \tag{6}
\end{array}
$$

where the possible functions F_{i} are the solutions of

$$
\begin{equation*}
\left(\partial_{x}^{2}+\partial_{y}^{2}+\gamma_{i}^{2} \partial_{z}^{2}\right) F_{i}=0 \quad i=1,2,3,4 \tag{7}
\end{equation*}
$$

where the values of m_{i} and γ_{i} are related by the following expressions:

$$
\begin{align*}
& \frac{c_{44}+\left(c_{13}+c_{44}\right) m_{i}}{c_{11}}=\frac{c_{33} m_{i}}{c_{13}+c_{44}+c_{44} m_{i}}=\gamma_{i}^{2} \quad i=1,2 \\
& c_{44} / c_{66}=\gamma_{3}^{2} \quad K_{1} / k_{2}=\gamma_{4}^{2} \tag{8}
\end{align*}
$$

Substituting (4) and (6) into (1), and using (7), we have (here only a part of them is listed)

$$
\begin{align*}
& \sigma_{z j}=\sigma_{j z}=\sum_{i=0}^{\infty} \delta^{i} \sigma_{z j}^{(i)} \quad H_{z j}=\sum_{i=0}^{\infty} \delta^{i} H_{z j}^{(i)} \quad(j=x, y, z) \\
& \sigma_{z z}^{(0)}=-c_{13} \partial_{z}^{2}\left(\gamma_{1}^{2} F_{1}+\gamma_{2}^{2} G_{2}\right)+c_{33} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}\right)+R_{2} \partial_{z} F_{4} \\
& \sigma_{z y}^{(0)}=\sigma_{y z}^{(0)}=c_{44} \partial_{y} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right]+c_{44} \partial_{x} \partial_{z} F_{3}+R_{3} \partial_{y} F_{4} \\
& \sigma_{z x}^{(0)}=\sigma_{x z}^{(0)}=c_{44} \partial_{x} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right]-c_{44} \partial_{y} \partial_{z} F_{3}+R_{3} \partial_{y} F_{4} \\
& H_{z z}^{(0)}=-R_{1} \partial_{z}^{2}\left(\gamma_{1}^{2} F_{1}+\gamma_{2}^{2} F_{2}\right)+R_{2} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}\right)+K_{1} \partial_{z} F_{4} \\
& H_{z x}^{(0)}=R_{3} \partial_{x} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right]-R_{3} \partial_{y} \partial_{z} F_{3}+K_{2} \partial_{x} F_{4} \\
& H_{z y}^{(0)}=R_{3} \partial_{y} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right]+R_{3} \partial_{x} \partial_{z} F_{3}+K_{2} \partial_{y} F_{4} . \tag{9}
\end{align*}
$$

4. A circular crack problem

Consider an infinite 1D hexagonal QC of point group 6 mm weakened by a flat circular crack with radius a in the plane $z=0$, with uniform loads applied normal to the crack faces. Due to symmetry, we consider only the half-space $z \geqslant 0$. The mixed boundary conditions in the plane $z=0$ reads

$$
\begin{array}{lll}
\sigma_{z z}=-\sigma & H_{z z}=-\tau & 0<r<a \\
u_{z}=0 & w_{z}=0 & r>a \\
\sigma_{z r}=0 & \sigma_{z \theta}=0 & r \geqslant 0 . \tag{10}
\end{array}
$$

Note that cylindrical polar coordinates in this case have been used (equations (4), (6) and (9) can be easily changed into those in cylindrical polar coordinates, which is omitted because of the limitation of space. Readers are referred to see [22]). Moreover, we suppose the elastic field under this loading condition to be independent of θ. We should also note that $H_{r z}=H_{\theta z}=0$ for $r \geqslant 0$ is satisfied. After the Hankel transformation to equations (7), considering the boundary condition at infinity:

$$
\begin{equation*}
\sigma_{i j} \rightarrow 0 \quad H_{i j} \rightarrow 0 \quad \sqrt{r^{2}+z^{2}} \rightarrow \infty \tag{11}
\end{equation*}
$$

the solution of (7) can be expressed as

$$
\begin{equation*}
F_{i}(r, z)=\int_{0}^{\infty} \xi A_{i}(\xi) \exp \left(-\xi z / \gamma_{i}\right) J_{0}(\xi r) \mathrm{d} \xi \quad i=1,2,3,4 \tag{12}
\end{equation*}
$$

It follows from $\sigma_{z \theta}=0$ for $r \geqslant 0$ that $F_{3}=0$. From $\sigma_{z r}=0$ for $r \geqslant 0$, we have

$$
\begin{equation*}
A_{4}=\left[\frac{1+m_{1}}{\gamma_{1}} A_{1}+\frac{1+m_{2}}{\gamma_{2}} A_{2}\right] \frac{c_{44} \xi}{R_{3}} . \tag{13}
\end{equation*}
$$

According to equations (4), (6), (9), the rest of the boundary conditions (10) and expression (13), we get

$$
\begin{align*}
& \begin{cases}\int_{0}^{\infty} \xi^{3} A_{1}(\xi) J_{0}(\xi r) \mathrm{d} \xi=\left(c_{2} \sigma-c_{4} \tau\right) /\left(c_{1} c_{4}-c_{2} c_{3}\right) & 0<r<a \\
\int_{0}^{\infty} \xi^{2} A_{1}(\xi) J_{0}(\xi r) \mathrm{d} \xi=0 & r>a\end{cases} \tag{14}\\
& \begin{cases}\int_{0}^{\infty} \xi^{3} A_{2}(\xi) J_{0}(\xi r) \mathrm{d} \xi=\left(c_{1} \sigma-c_{3} \tau\right) /\left(c_{2} c_{3}-c_{1} c_{4}\right) & 0<r<a \\
\int_{0}^{\infty} \xi^{2} A_{2}(\xi) J_{0}(\xi r) \mathrm{d} \xi=0 & r>a\end{cases} \tag{15}
\end{align*}
$$

with

$$
\begin{array}{ll}
c_{i}=-R_{1}+\frac{R_{2} m_{i}}{\gamma_{i}^{2}}-\frac{K_{1} c_{44}\left(1+m_{i}\right)}{\gamma_{i} \gamma_{4} R_{3}} & i=1,2 \\
c_{j+2}=-c_{13}+\frac{c_{33} m_{j}}{\gamma_{j}^{2}}-\frac{R_{2} c_{44}\left(1+m_{j}\right)}{\gamma_{j} \gamma_{4} R_{3}} & j=1,2 .
\end{array}
$$

According to the theory of dual integral equations [25,26], from (14) and (15) we can easily obtain that (also see appendix in [22])

$$
\begin{align*}
& A_{1}(\xi)=\left[2\left(c_{2} \sigma-c_{4} \tau\right) / \pi\left(c_{1} c_{4}-c_{2} c_{3}\right)\right] \xi^{-3}\left(\xi^{-1} \sin a \xi-a \cos a \xi\right) \\
& A_{2}(\xi)=\left[2\left(c_{1} \sigma-c_{3} \tau\right) / \pi\left(c_{2} c_{3}-c_{1} c_{4}\right)\right] \xi^{-3}\left(\xi^{-1} \sin a \xi-a \cos a \xi\right) \tag{16}
\end{align*}
$$

From the above we can calculate the most important physical quantity in fracture theory, the stress intensity factor (SIF). As in [22], for the phonon field and the phason field, respectively, we define SIFs

$$
\begin{equation*}
K_{1}^{\|}=\lim _{r \rightarrow a+} \sqrt{2 \pi(r-a)} \sigma_{z z}(r, 0) \quad K_{1}^{\perp}=\lim _{r \rightarrow a+} \sqrt{2 \pi(r-a)} H_{z z}(r, 0) \tag{17}
\end{equation*}
$$

It follows from equations (9), (12), (13) and (16) that

$$
\begin{align*}
& \sigma_{z z}^{(0)}(r, 0)= \begin{cases}-\sigma & 0<r<a \\
-\frac{2 \sigma}{\pi}\left(\arcsin \frac{a}{r}-\frac{a}{\sqrt{r^{2}-a^{2}}}\right) & r>a\end{cases} \tag{18}\\
& H_{z z}^{(0)}(r, 0)= \begin{cases}-\tau & 0<r<a \\
-\frac{2 \tau}{\pi}\left(\arcsin \frac{a}{r}-\frac{a}{\sqrt{r^{2}-a^{2}}}\right) & r>a .\end{cases} \tag{19}
\end{align*}
$$

The substitution of (18) and (19) into (17) yields

$$
\begin{equation*}
K_{1}^{\|}=2 \sqrt{a / \pi} \sigma \quad K_{1}^{\perp}=2 \sqrt{a / \pi} \tau \tag{20}
\end{equation*}
$$

It is of interest to see that equations (20) are the exact results which have been obtained by the first two of the authors in this paper [22].

5. Conclusions

The elastic equations of QCs are very complicated, and the exact solutions for 3D problems are scarce. As a possible approximation method, we supply a new perturbation technique for solving elastic 3D problems of QCs. Although we use it to deal with 1D hexagonal QCs with point groups $6 \mathrm{~mm}, 62_{h} 2_{h}, \overline{6} m 2_{h}$ and $6 / m_{h} m m$, it is obvious that the same procedure will be suitable for the elastic problems for 2D and 3D QCs. Nevertheless, are the asymptotic solutions (4) convergent? Even though equations (4) are divergent, we have also many methods to obtain their summation [27].

Acknowledgment

This work is supported by the National Natural Science Foundation of China.

References

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 531951
[2] Feng Y-C, Lu G and Withers R L 1989 J. Phys.: Condens. Matter 13695
[3] Wang R, Qin C S, Lu G, Feng Y-C and Xu S-Q 1994 Acta Crystallogr. A 50366
[4] Bendersky L 1985 Phys. Rev. Lett. 551461
[5] Ishimasa T, Nissen H U and Fukano Y 1985 Phys. Rev. Lett. 55511
[6] Wang N, Chen H and Kuo K-H 1987 Phys. Rev. Lett. 591010
[7] Merlin R et al 1985 Phys. Rev. Lett. 551768
[8] He L-X et al 1988 Phys. Rev. Lett. 611116
[9] Bak P 1985 Phys. Rev. Lett. 541517
[10] Levine D et al 1985 Phys. Rev. Lett. 541520
[11] Socolar J E S, Lubensky T C and Steinardt P J 1986 Phys. Rev. B 343345
[12] Ding D-H et al 1993 Phys. Rev. B 487003
[13] Dai M X and Urban K 1993 Phil. Mag. Lett. 6767
[14] Ebert Ph et al 1996 Phys. Rev. Lett. 773827
[15] De P and Pecovits R A 1987 Phys. Rev. B 358609
De P and Pecovits R A 1987 Phys. Rev. B 369304
[16] Ding D-H et al 1995 J. Phys.: Condens. Matter 75423
Ding D-H et al 1995 Phil. Mag. Lett. 72353
[17] Fan T-Y 1999 Mathematical Theory of Elasticity of Quasicrystals and its Applications (Beijing: Beijing Institute of Technology Press) (in Chinese)
[18] Li X-F, Fan T-Y and Sun Y-F 1999 Phil. Mag. A 791943
[19] Qin Y, Wang R, Ding D-H and Lei J 1997 J. Phys.: Condens. Matter 9859
[20] Yang W et al 1995 Phys. Lett. A 200177
[21] Yang W-G et al 1998 Phil. Mag. A 771481
[22] Peng Y-Z and Fan T-Y 2000 J. Phys.: Condens. Matter 129381
[23] Peng Y-Z and Fan T-Y 2000 Chin. Phys. 9764
[24] Wang R-H, Yang W-G, Hu C-Z and Ding D-H 1997 J. Phys.: Condens. Matter 92411
[25] Titchmarsh E C 1937 Introduction to the Theory of Fourier Integrals (Oxford) p 337
[26] Busbridge I W 1938 Proc. London Math. Soc. 44114
[27] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) ch 8

