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Abstract
A new perturbation technique for solving elastic three-dimensional problems
of quasicrystals is supplied. The key idea of this technique is to simplify
the equations by introducing a parameter which does not exist in the original
equations, and then look for the perturbation solution for the problems of
interest. To illustrate the utility of our method and for comparison, we consider
the crack problem for one-dimensional hexagonal quasicrystals with point
groups 6mm, 62h2h, 6̄m2h and 6/mhmm, whose exact solution has been
obtained by the first two authors of this paper. Only up to the order zero
approximation, we get the exact expression for the stress intensity factor, which
is the most important physical quantity in fracture theory. Moreover, the same
procedure can be used to deal with the elastic problems for two- and three-
dimensional quasicrystals. A simple review of the method is finally given.

1. Introduction

Since the discovery of three-dimensional (3D) icosahedral quasicrystals (QCs) in in Al–Mn
alloys [1], 3D cubic QCs [2, 3], two-dimensional (2D) QCs [4–6] and one-dimensional (1D)
QCs [7, 8] have been discovered in succession, and QCs have become the focus of theoretical
and experimental studies in the physics of condensed matter. The physical properties, such
as the structural, electronic, magnetic, optical and thermal properties, of QCs have been
investigated intensively. Elasticity is one of the interesting properties of QCs. Based on Landau
theory, QC elasticity theory was formulated [9–12]. On the other hand, as in conventional
crystals, many structural defects have already been observed experimentally in QCs. For
example, some experimental results show that some 2D defects such as planar defects and
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cracks produced by cleavage are detected in QCs [13, 14]. Also, some macroscopic cracks or
flaws inevitably exist in QC solids. So the defect problems for QCs, such as dislocation and
crack problems, are studied by many authors [15–23]. However, most of the authors consider
only the elastic plane or antiplane problems for QCs [15–21], i.e., they suppose that the elastic
fields induced in QCs are independent of the variable z.

It is well known that the elastic equations of QCs are much more complicated than those
in classical elasticity theory. The exact solutions for QC elastic equations can be obtained only
in a few cases. For example, we have obtained the exact elasticity theory of 1D hexagonal
QCs with point groups 6mm, 62h2h, 6̄m2h and 6/mhmm [22]. But for other QCs it seems
indispensable for us to develop approximate method. In our previous work [23], we proposed
the perturbation method for solving elastic 3D problems of icosahedral QCs (regarding the
elastic constant R of phonon–phason coupling as a perturbation parameter). However, it is not
general. For instance, it is not easily used to deal with elastic 3D problems of cubic QCs.

In this paper, we supply a new perturbation technique for solving elastic 3D problems of
QCs. This method is general and can be used to deal with elastic problems for 1D, 2D and
3D QCs. To illustrate its utility and for comparison, we consider the same problem as in [22]
(because its exact solution has been obtained by the first two of the authors in this paper), that
is, the problem of a circular crack embedded in an infinite 1D hexagonal QC of point group
6mm. Only up to the order zero approximation, the exact stress intensity factor expression
(which is the most important physical quantity in fracture theory) for the loading of mode I is
obtained. It is easy to see that the same procedure can be used to deal with the elastic problems
for 2D and 3D QCs.

2. The basic equations

According to 1D QC elasticity theory [24], strain– and stress–displacement relations for 1D
hexagonal QCs with point groups 6mm, 62h2h, 6̄m2h and 6/mhmm, respectively, are

εij = (∂jui + ∂iuj )/2 wij = ∂jwi

σxx = c11∂xux + (c11 − 2c66)∂yuy + c13∂zuz + R1∂zwz

σyy = (c11 − 2c66)∂xux + c11∂yuy + c13∂zuz + R1∂zwz

σzz = c13∂xux + c13∂yuy + c33∂zuz + R2∂zwz

σyz = σzy = c44(∂yuz + ∂zuy) + R3∂ywz

σzx = σxz = c44(∂xuz + ∂zux) + R3∂xwz

σxy = σyx = c66(∂xuy + ∂yux)

Hzz = R1(∂xux + ∂yuu) + R2∂zuz) + K1∂zwz

Hzx = R3(∂xuz + ∂zux) + K2∂xwz

Hzy = R3(∂xuz + ∂zuy) + K2∂xwz. (1)

The equilibrium equations in terms of displacements, in the absence of body forces, are

(c11∂
2
x + c66∂

2
y + c44∂

2
z )ux + (c11 − c66)∂x∂yuy + (c13 + c44)∂x∂zuz + (R1 + R3)∂x∂zwz = 0

(c11 − c66)∂x∂yux + (c66∂
2
x + c11∂

2
y + c44∂

2
z )uy + (c13 + c44)∂y∂zuz + (R1 + R3)∂y∂zwz = 0

(c13 + c44)(∂x∂zux + ∂y∂zuy) + (c44∂
2
x + c44∂

2
y + c33∂

2
z )uz + [R3(∂

2
x + ∂2

y ) + R2∂
2
z ]wz = 0

(R1 + R3)(∂x∂zux + ∂y∂zuy) + [R3(∂
2
x + ∂2

y ) + R2∂
2
z ]uz + [K2(∂

2
x + ∂2

y ) + K1∂
2
z ]wz = 0 (2)

where the z-axis is assumed to be the quasiperiodic axis, and the xy-plane the periodic plane
of the QC, ui , wi phonon and phason displacements in the physical and perpendicular spaces,
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respectively, σij and εij phonon stresses and strains, Hij and wij phason stresses and strains,
c11, c13, c33, c44, c66, K1, K2 the elastic constants corresponding to the phonon and phason
fields and R1, R2, R3 the elastic constants of phonon–phason coupling. We should keep in
mind that the subscripts i, j for Hij , wij cannot be exchanged according to their meanings
[12]. It is very important for us to write the boundary conditions correctly.

3. The perturbation method

Introducing a dimensionless parameter δ in equations (2), then we rewrite (2) as

(c11∂
2
x + c66∂

2
y + c44∂

2
z )ux + (c11 − c66)∂x∂yuy + (c13 + c44)∂x∂zuz + δ(R1 + R3)∂x∂zwz = 0

(c11 − c66)∂x∂yux + (c66∂
2
x + c11∂

2
y + c44∂

2
z )uy + (c13 + c44)∂y∂zuz + δ(R1 + R3)∂y∂zwz = 0

(c13 + c44)(∂x∂zux + ∂y∂zuy) + (c44∂
2
x + c44∂

2
y + c33∂

2
z )uz + δ[R3(∂

2
x + ∂2

y ) + R2∂
2
z ]wz = 0

δ(R1 + R3)(∂x∂zux + ∂y∂zuy) + δ[R3(∂
2
x + ∂2

y ) + R2∂
2
z ]uz + [K2(∂

2
x + ∂2

y ) + K1∂
2
z ]wz = 0. (3)

When δ = 1, equations (3) recover (2). For equations (3) we look for the solution of the form

ux =
∞∑
i=0

δiu(i)
x uu =

∞∑
i=0

δiu(i)
y

uz =
∞∑
i=0

δiu(i)
z wz =

∞∑
i=0

δiw(i)
z (4)

where u(i)
x , u(i)

y , u(i)
z and w(i)

z satisfy the following equations:

(c11∂
2
x + c66∂

2
y + c44∂

2
z )u

(i)
x + (c11 − c66)∂x∂yu

(i)
y + (c13 + c44)∂x∂zu

(i)
z

= − (R1 + R3)∂x∂zw
(i−1)
z

(c11 − c66)∂x∂yu
(i)
x + (c66∂

2
x + c11∂

2
y + c44∂

2
z )u

(i)
y + (c13 + c44)∂y∂zu

(i)
z

= − (R1 + R3)∂y∂zw
(i−1)
z

(c13 + c44)(∂x∂zu
(i)
x + ∂y∂zu

(i)
y ) + (c44∂

2
x + c44∂

2
y + c33∂

2
z )u

(i)
z

= − [R3(∂
2
x + ∂2

y ) + R2∂
2
z ]w(i−1)

z

[K2(∂
2
x + ∂2

y ) + K1∂
2
z ]w(i)

z

= − (R1 + R3)(∂x∂zu
(i−1)
x + ∂y∂zu

(i−1)
y ) − [R3(∂

2
x + ∂2

y ) + R2∂
2
z ]u(i−1)

z . (5)

From now on, the quantities with negative superscripts are taken as zero, and one can directly
verify that equations (5) with i = 0 can be satisfied by (also see [22])

u(0)
x = ∂x(F1 + F2) − ∂yF3 u(0)

y = ∂y(F1 + F2) + ∂xF3

u(0)
z = ∂z(m1F1 + m2F2) w(0)

z = F4 (6)

where the possible functions Fi are the solutions of

(∂2
x + ∂2

y + γ 2
i ∂

2
z )Fi = 0 i = 1, 2, 3, 4 (7)

where the values of mi and γi are related by the following expressions:

c44 + (c13 + c44)mi

c11
= c33mi

c13 + c44 + c44mi

= γ 2
i i = 1, 2

c44/c66 = γ 2
3 K1/k2 = γ 2

4 . (8)
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Substituting (4) and (6) into (1), and using (7), we have (here only a part of them is listed)

σzj = σjz =
∞∑
i=0

δiσ
(i)
zj Hzj =

∞∑
i=0

δiH
(i)
zj (j = x, y, z)

σ (0)
zz = −c13∂

2
z (γ

2
1 F1 + γ 2

2 G2) + c33∂
2
z (m1F1 + m2F2) + R2∂zF4

σ (0)
zy = σ (0)

yz = c44∂y∂z[(m1 + 1)F1 + (m2 + 1)F2] + c44∂x∂zF3 + R3∂yF4

σ (0)
zx = σ (0)

xz = c44∂x∂z[(m1 + 1)F1 + (m2 + 1)F2] − c44∂y∂zF3 + R3∂yF4

H(0)
zz = −R1∂

2
z (γ

2
1 F1 + γ 2

2 F2) + R2∂
2
z (m1F1 + m2F2) + K1∂zF4

H(0)
zx = R3∂x∂z[(m1 + 1)F1 + (m2 + 1)F2] − R3∂y∂zF3 + K2∂xF4

H(0)
zy = R3∂y∂z[(m1 + 1)F1 + (m2 + 1)F2] + R3∂x∂zF3 + K2∂yF4. (9)

4. A circular crack problem

Consider an infinite 1D hexagonal QC of point group 6mm weakened by a flat circular crack
with radius a in the plane z = 0, with uniform loads applied normal to the crack faces. Due
to symmetry, we consider only the half-space z � 0. The mixed boundary conditions in the
plane z = 0 reads

σzz = −σ Hzz = −τ 0 < r < a

uz = 0 wz = 0 r > a

σzr = 0 σzθ = 0 r � 0. (10)

Note that cylindrical polar coordinates in this case have been used (equations (4), (6) and (9)
can be easily changed into those in cylindrical polar coordinates, which is omitted because
of the limitation of space. Readers are referred to see [22]). Moreover, we suppose the
elastic field under this loading condition to be independent of θ . We should also note that
Hrz = Hθz = 0 for r � 0 is satisfied. After the Hankel transformation to equations (7),
considering the boundary condition at infinity:

σij → 0 Hij → 0
√
r2 + z2 → ∞ (11)

the solution of (7) can be expressed as

Fi(r, z) =
∫ ∞

0
ξAi(ξ) exp(−ξz/γi)J0(ξr) dξ i = 1, 2, 3, 4. (12)

It follows from σzθ = 0 for r � 0 that F3 = 0. From σzr = 0 for r � 0, we have

A4 =
[

1 + m1

γ1
A1 +

1 + m2

γ2
A2

]
c44ξ

R3
. (13)

According to equations (4), (6), (9), the rest of the boundary conditions (10) and expression
(13), we get


∫ ∞

0
ξ 3A1(ξ)J0(ξr) dξ = (c2σ − c4τ)/(c1c4 − c2c3) 0 < r < a

∫ ∞

0
ξ 2A1(ξ)J0(ξr) dξ = 0 r > a

(14)




∫ ∞

0
ξ 3A2(ξ)J0(ξr) dξ = (c1σ − c3τ)/(c2c3 − c1c4) 0 < r < a

∫ ∞

0
ξ 2A2(ξ)J0(ξr) dξ = 0 r > a

(15)
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with

ci = −R1 +
R2mi

γ 2
i

− K1c44(1 + mi)

γiγ4R3
i = 1, 2

cj+2 = −c13 +
c33mj

γ 2
j

− R2c44(1 + mj)

γjγ4R3
j = 1, 2.

According to the theory of dual integral equations [25, 26], from (14) and (15) we can easily
obtain that (also see appendix in [22])

A1(ξ) = [2(c2σ − c4τ)/π(c1c4 − c2c3)]ξ
−3(ξ−1 sin aξ − a cos aξ)

A2(ξ) = [2(c1σ − c3τ)/π(c2c3 − c1c4)]ξ
−3(ξ−1 sin aξ − a cos aξ). (16)

From the above we can calculate the most important physical quantity in fracture theory, the
stress intensity factor (SIF). As in [22], for the phonon field and the phason field, respectively,
we define SIFs

K
‖
1 = lim

r→a+

√
2π(r − a)σzz(r, 0) K⊥

1 = lim
r→a+

√
2π(r − a)Hzz(r, 0). (17)

It follows from equations (9), (12), (13) and (16) that

σ (0)
zz (r, 0) =




−σ 0 < r < a

−2σ

π

(
arcsin

a

r
− a√

r2 − a2

)
r > a

(18)

H(0)
zz (r, 0) =




−τ 0 < r < a

−2τ

π

(
arcsin

a

r
− a√

r2 − a2

)
r > a.

(19)

The substitution of (18) and (19) into (17) yields

K
‖
1 = 2

√
a/πσ K⊥

1 = 2
√
a/πτ. (20)

It is of interest to see that equations (20) are the exact results which have been obtained
by the first two of the authors in this paper [22].

5. Conclusions

The elastic equations of QCs are very complicated, and the exact solutions for 3D problems
are scarce. As a possible approximation method, we supply a new perturbation technique for
solving elastic 3D problems of QCs. Although we use it to deal with 1D hexagonal QCs with
point groups 6mm, 62h2h, 6̄m2h and 6/mhmm, it is obvious that the same procedure will be
suitable for the elastic problems for 2D and 3D QCs. Nevertheless, are the asymptotic solutions
(4) convergent? Even though equations (4) are divergent, we have also many methods to obtain
their summation [27].
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